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Unstable hydrodynamic flows containing different materials such as Rayleigh-Taylor 
instability rapidly evolve to a chaotic state with limited predictability and a distribution of 
materials having a fractral dimension. Here it is shown how Lagrange points, either existing as 
part of the hydrodynamic solution method or added as passive tracers, can be used to test for 
self-similarity and to compute the dimension and spatial resolution scaling for the Rayleigh- 
Taylor instability mixing region. The effciency of the integral or point counting methods of 
estimating dimension is discussed and it is shown how it can be increased by order of 
magnitude factors using random sampling. The problem of how to compute the rate of loss of 
memory of initial conditions in the transient case is discussed and a quantity similar to a 
largest Lyapunov exponent is defined and used to determine the predictability time for the 
Rayleigh-Taylor problem. f> 1988 Academic Press, Inc. 

For many types of boundary and initial conditions there are fundamental 
limitations on how far the Navier-Stokes equations can be integrated forward in 
time to predict the future flow. Unstable hydrodynamic flows containing different 
fluids such as Rayleigh-Taylor instability rapidly evolve to turbulence with a 
chaotic distribution of materials. Some general numerical methods for measuring 
dimension and the rate of loss of memory of initial conditions have recently become 
available, but ways of adapting and improving them or creating new methods for 
hydrodynamic computations are needed. 

The theory of nonlinear dynamical systems has yielded a better quantitative 
understanding of the general mechanism of the transition to chaotic motion [ 1,2]. 
In the ergodic theory there are the Lyapunov exponents to measure how rapidly the 
trajectories of a dynamical system diverge or converge along the principal axis in 
phase space, and to specify how long deterministic equations can predict the future 
motion. There are geometrical types of measures such as the correlation dimension, 
the Hausdorff or fractal dimension, and an entire spectrum of generalized dimen- 
sions that specify how the resolution of the geometrical details of the system under 
study improve with successively liner scales of linear measurement. 
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In the transient case of unstable hydrodynamic flow a quantity similar to a 
largest Lyapunov exponent can provide useful information defining limits on what 
can be computed and what cannot, except in terms of statistical probabilities. In 
this situation where predictability over a limited interval is possible, but with 
steadily degrading accuracy, such a measure can be used to estimate the limits on 
predictability due to noise or uncertainty in the initial conditions. 

The geometrical configuration of materials in these flows can become fractal and 
in these cases dimensional measurements can provide upper limits on the spatial 
resolution improvement that can be achieved with computing mesh refinement. In 
this way knowledge of dimension and predictability measures can be of help in 
estimating the limits to what can be learned from deterministic simulation and 
modeling of a given unstable hydrodynamic flow, as well as providing scaling infor- 
mation for the geometrical properties of the flow. In the following I show how 
dimension and predictability measures were obtained for the Rayleigh-Taylor 
instability problem, but these techniques should have application to many other 
material tracking and chaotic flow problems in computational hydrodynamics. 

Rayleigh-Taylor instability occurs at the boundary between two fluids of dif- 
ferent density when there is an acceleration of the fluids directed from the lighter 
density toward the heavier density fluid. Small perturbations of the interface grow 
exponentially until the flow becomes nonlinear. The early and middle stages of non- 
linear growth have been studied extensively using a range of hydrodynamic com- 
puting methods [3,4]. Eventually the flow evolves to an asymptotic stage where 
the two materials are mixed together in a random pattern of whorls, tendrils, and 
bubbles. The ability to compute the details of this mix stage, at least the statistics, 
are of current interest in inertial confinement fusion research, but the problem is 
also of general computational interest because it is typical of a large class of trans- 
ient hydrodynamic flows involving the evolution of an unstable interface between 
different fluids and the tracking of fluid elements in flow evolving toward chaos. 

When the memory of the initial conditions is decaying with time and the flow is 
becoming chaotic, the mixed region between the fluids can become fractal. The 
geometrical properties of the mixed region are often of physical importance, and 
one would like to know how the computational accuracy of these features scales 
with mesh size. Limits on resolution scaling of the geometrical details of the 
materials in the flow can be determined from the fractal dimension. If the linear 
mesh resolution is doubled in a two-dimensional problem and the fractal dimension 
is d, then the spatial resolution of the details of the mixed region are proportional 
to 2”. Since d will usually be less than the computing mesh dimension, doubling the 
mesh will not result in an increase in resolution of the interface details proportional 
to the increase in total number of mesh points. 

Dimensional computations can also provide information that can be used to 
compensate for the inability of the hydrodynamic computations to resolve 
geometrical features smaller than the mesh interval. The concept of a fractal dimen- 
sion by definition means that over some range of length scales the geometry is, at 
the least, statistically self-similar. The method of computing the dimension 
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automatically provides a test for self-similarity; the distribution of mixed material 
must follow a power law over some range of scales. If self-similarity exits in the 
geometry of the flow near the lower end of the mesh resolution then there is good 
evidence that the geometrical properties of the flow field just below the mesh 
resolution are related to those just within the mesh resolution by this self-similar 
scaling. 

Calculation of the dimension is usually not a trivial task and in some cases may 
not be feasible. Box counting is a straightforward method, but inefficient [5]. In the 
Rayleigh-Taylor problem the method could be applied by overlaying a fixed area of 
the mixed region with a square grid of side 6 and counting the number of squares 
occupied by each material. If N(6) is the number of squares occupied then the 
fractal dimension is given by 

d = ii$ ijn+$t In N/ln( l/6) (1) 

Every square has to be tested for material type, and the mesh has to increase to a 
very line net to get convergence. The mesh used in hydrodynamic computations is 
unlikely to be fine enough to get enough resolution because the materials are 
stretched and folded into thin filaments that can be much narrower than one mesh 
width. Box counting methods have been studied by using them on the solutions 
from small coupled sets of nonlinear differential equations with known properties 
such as the Lorenz equations and shown to be computationally impractical. 

More efficient methods of estimating the dimension have recently become 
available [6]. These are based on computing distances between pairs of points 
defining the evolution of the solution vector in m-dimensional phase space, and 
then creating a plot of the number of pairs of points C” with separation less then 
distance r. The slope of the plot of Ln C” versus Ln r is the correlation dimension. 

d= limit limit Ln Cm(r)/ln r. 
N-ac r-r0 (2) 

The correlation dimension is a lower bound on the fractal dimension, but in most 
cases the difference is quite small so that the computation is also a good estimate of 
the fractal dimension. The concept of dimension has been generalized to cover a 
complete spectrum of scaling parameters [16], but here I consider only the 
correlation dimension since the method of computing it can be applied to get the 
other dimensional measures if desired. One reason Lagrange point counting is 
much more efficient than box counting is that it uses only data defining the solution 
vector, whereas with box counting every cell in space must be examined whether it 
is occupied by a solution point or not. With the point counting method all pairs of 
the N points defining the solution are used requiring N(N- 1)/2 distance com- 
putations and bin sorts. Therefore, computation of a dimension estimate can still be 
costly because the operation count goes like iV* and because many points are 
generally required to get reasonably good delinition of the solution trajectory-at 
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least several thousand and, more often, ten thousand or more points. Some speedup 
can be obtained with special machine programming tricks for the sorting 
operation [ 61. 

The point counting method is ideally suited for Lagrangian hydrodynamic com- 
putations since the Lagrange points are the points defining the solution trajectory 
in physical and velocity or momentum phase space. Unfortunately, pure 
Lagrangian hydrodynamic computing methods cannot be used for chaotic flows 
because of mesh distortion and scrambling, just the situations in which dimensional 
computations are useful. Free Lagrange methods and some of the early combined 
Lagrange-Eulerian computing schemes have the advantage of carrying a large 
number of Lagrange points that can be used for dimension computations while 
avoiding the scrambling problem [&lo]. The methods discussed here can be used 
with any Navier-Stokes integration scheme that can continue into the chaotic 
regime since Lagrange points can always be added to the computations if they are 
not already present. In the incompressible case if the Lagrange points are restricted 
to a purely passive tracer role and recent higher order methods are used in solving 
the underlying Eulerian mesh equations, good accuracy can be obtained [ 111. In 
the section on resolution and dimension I show how the dimension can be com- 
puted from the Lagrange points and how the computational efhciency of the dimen- 
sion calculation can be increased. 

Stretching and folding in phase space are necessary conditions for deterministic 
chaos and hydrodynamic flows evolving towards chaos show Lagrangian mesh 
scrambling. The breakdown of pure Lagrangian computing methods due to mesh 
scrambling is a good indication that the flow has limited predictability. In these 
cases the flow is not predictable from computation for more than a short interval 
except as one realization drawn from a statistical distribution of possible long time 
solutions that are independent of the initial conditions. We can, however, hope to 
get statistical data for these flows from long time hydrodynamic computations. 

If only the initial transient stages of the flow are of interest, at least the early 
instants of the motion can be predicted deterministically, but with decreasing 
accuracy as time passes. In these cases knowledge of the rate of loss of memory of 
the initial conditions is useful as a guide as to how much of an improvement in 
simulation or modeling capability can be gotten from reductions in computational 
truncation errors, increases in computing mesh size, improvements in definition of 
the initial conditions, use of adaptive meshes, and other stratagems for increasing 
computational accuracy. 

In chaotic systems the rate at which noise grows and the rate at which infor- 
mation is created is measured by the largest Lyapunov exponent A, [7]. This can 
be estimated from 

The summation is a time average over the solution integration time, and L and 
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L’ are the beginning and ending distances between the solution trajectory and a 
solution for a trajectory starting from a point displaced slightly from the solution 
trajectory. The definition strictly applies only after transients have completely 
decayed away. 

The largest Lyapunov exponent determines the predictability time for a 
dynamical system such as the Lorenz equations. If the initial conditions for the set 
of nonlinear equations defining the system-assumed to be one of the possible long 
term states of the system-are specified with p bits of precision then the evolution 
of the system can be predicted only for a time, 

z =p/A,. (4) 

In terms of the computational accuracy of integrating the equations this means 
that if the machine word length is p bits, no matter how accurate the numerical 
integration method the solution can only be computed for a time T before all 
memory of the initial conditions is lost. 

Good methods for computing Lyapunov exponents from discrete time series are 
available that can be applied to the output from hydrodynamic computations; 
however, these methods and the definition of the Lyapunov exponents assume that 
the dynamical system under study is ergodic and that all transients have long since 
decayed away [7]. These conditions are likely to be appropriate for problems such 
as general circulation modeling of the atmosphere and oceans, but do not apply to 
transient problems such as the Rayleigh-Taylor instability. If we define a new quan- 
tity that is similar to the largest Lyapunov exponent, except that the average is over 
an ensemble of problems with small random differences in the initial conditions, 
then we get a statistical quantity that is applicable to the transient case. I call this 0, 
the predictability exponent, since by definition it measures the divergence of 
solutions with small random differences in initial conditions, or equivalently, the 
growth of noise present in the initial conditions, 

Q’= r-‘2/N(N- 1) f log,[L,(t)/L,(O)], (5) 
ij 

where the summation is over all N(N- 1)/2 pairs of solutions i and j separated by 
distance L,. Thus the average is over an ensemble of solutions evolving over a lixed 
time interval instead of an average of one solution over many successive time 
intervals. 

With this definition the average distance L between any two pairs of transient 
solutions starting with small random differences in the initial conditions is given by 

L = L,2”‘. (6) 

This is the rate at which noise or uncertainty in the initial conditions grows with 
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time. Thus if the initial conditions are specified with p bits of precision then the 
transient evolution can be predicted only up to a time given by 

In the section on predictability I show how the distances L, can be computed 
from hydrodynamic data and how to compute 0. 

RAYLEIGH-TAYLOR HYDRODYNAMIC COMPUTATIONS 

The geometry of the Rayleigh-Taylor problem studied consists of an alternating 
set of layers of two liquids extending to infinity. In the hydrodynamic computations 
the domain is restricted to a square region 1.5 cm on a side, with periodic boundary 
conditions on each edge. A constant body force is applied to one of the liquids 
which pushes against the other, accelerating the whole mass of liquid. The mean 
density of the liquids is 1.0 g/cm3, the viscosity is 0.01 g/cm/s, and the initial 
thickness of the forced layers is 0.3 cm. Initially the surface of the layers is 
roughened with a random white noise spectrum. As the forced layer accelerates 
from rest, the upper surface becomes unstable while the perturbations on the lower 
surface decay away. Only the limiting case of the Atwood number approaching zero 
has been studied in these computations since the focus of the work has been on 
computation of dimension and predictability. Because of this the Boussinesq 
approximation can be used and the effective body force is given by 

S = 2po& (8) 

where A is the Atwood number, g is the acceleration, and p,, is the mean density. 
Widely differing methods have been used to integrate the incompressible 

Rayleigh-Taylor problem including Marker and Cell [4], Vortex [12], boundary 
integral [13], and front tracking methods [17]. The dimension and predictability 
computations described here can be used with any Navier-Stokes integrator that is 
reasonably accurate; however, an absolute requirement is that the integrator must 
be able track the flow past the point where Lagrange mesh scrambling occurs. The 
Navier-Stokes integrator used in these computations is Eulerian and requires no 
Lagrange grid construction during evolution of the instability. Consequently, 
problems of mesh scrambling are avoided without sacrificing definition of the layer 
geometry, and, as a result, the evolution of the instability can be followed into the 
mixing phase for as long as desired. 

This integration method can maintain good accuracy in problems such as the 
Rayleigh-Taylor instability, provided the Eulerian zone size is kept in the viscous 
scale range and provided the initial perturbation is not so small as to be quickly 
swamped by truncation error growth. In more quantitative terms it is desirable to 
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keep the mesh size smaller than the wave length of the most rapidly growing distur- 
bance predicted from linear analysis of the viscous case, 

Ax < /I,,, = 4n(v2/Ag)“3 = 4~~(2pv~/f)“~, (9) 

where f is the body force per unit volume, A is the Atwood number, g is the 
acceleration, v is the kinematic viscosity, and 1, is the wave length of the most 
rapidly growing perturbation. 

There is always noise from roundoff and truncation error, no matter what the 
computational method, and in Rayleigh-Taylor unstable flows that noise will 
rapidly grow to a point where it swamps all memory of the initial conditions. One 
can still estimate the average growth rate of the noise; it is just necessary to start 
with a big enough perturbation and keep the mesh size small enough to resolve the 
viscous scales of motion. 

The difference scheme used to integrate the Navier-Stokes equations on the 
Eulerian grid is similar to the method described by Kim and Moin [ 1 I]. This 
method uses a direct solver to obtain the solution to the Poisson equation for the 
pressure, and an Adams-Bashforth second-order integration step to advance the 
time. Kim and Moin also include an implicit treatment of the viscous terms which 
is not necessary for the Rayleigh-Taylor problem because the mesh spacing is 
uniform and the viscosity is small. Since an explicit formula for the viscosity terms 
is faster, it is used instead. The accuracy is further enhanced by using the Lagrange 
points only to determine which Eulerian cells contain the body forcing term. This is 
feasible because the Boussinesq approximation eliminates the need to determine 
a density field for the Eulerian mesh. More details of the method are given in 
Appendix A. 

The numerical method is well known and the accuracy of computation has been 
documented in [ 111. I have tested the method on some other problems as well. The 
range of nonlinear problems for which analytical solutions exist is limited, however 
there are a few cases, such as periodic shear flow with a transverse drift velocity, 
which can be solved analytically and which provide tests of differencing of both the 
viscous and nonlinear transport terms. The solution for this case is given in Appen- 
dix B. This case was tried with good results, an example of which is shown in Fig. 1. 
Symmetry tests are also useful in checking for program errors, especially problems 
with boundary conditions. Single mode Rayleigh-Taylor instability is a useful test 
problem in this respect because any small errors are rapidly amplified by the 
physical instability. 

An example of single mode Rayleigh-Taylor intability on a length scale similar to 
that for the memory loss rate computations is shown in Fig. 2. This computation 
was done on a 60 x 60 Eulerian mesh with 6480 Lagrange points defining the forced 
layer. The layer surface is initially displaced sinusoidally with a wave length of 12 
zones and a peak to peak amplitude +th of the layer thickness. The body force is 
117.6 dynes/cm3 and the viscosity is 0.01 g/cm/s, approximately the viscosity of 
water. Although there is no analytical solution available, several features can be 
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X 

FIG. 1. Comparison of the numerical solution with the analytical solution for a shear flow driven by 
a spatially alternating body force. The hydrodynamic computations were done on a 60 x 60 Eulerian 
grid. The solution is skewed because there is a drift velocity imposed perpendicular to the body force. 
Solid curve and small squares are the analytic and numerical solutions respectively. v =O.Ol cm*/s, 
U, = 0.0596 cm/s, d = 0.75 cm, and F= 0.379258 dynes/cmj. 

compared with results from recent boundary integral solutions of the inviscid 
problem [15]. In the Boussinesq limit the variables can be put in dimensionless 
form by dividing lengths by the wave length of the starting perturbation 1, and 
times by ,,/m = ,,/m. When this is done the main features of the solution 
in Fig. 2 are found be very close to those for the inviscid solution, even though the 
physical viscosity is not small. One characteristic of the Boussinesq limit is that the 
bubble and spike should have identical shapes and be symmetrical about a line 
through the mean position of the interface. The solution in Fig. 2 has this symmetry 
to within the resolution of the Lagrange point density. A second characteristic of 
the inviscid Boussinesq solution is that the bubble velocity increases rapidly and 
then levels off at a constant value of approximately 0.22 in dimensionless units. The 
solution in Fig. 2 reaches this asymptotic stage by t = 0.15, leveling off at a dimen- 
sionless bubble rise velocity of approximately 0.21 measured relative to the midline 
of the interface. The one significant difference between the solution in Fig. 2 and the 
inviscid Boussinesq result is that the singular points where the inviscid flow rolls up 
are completely smoothed out and removed by the physical viscosity. The RMS dif- 
fusion of momentum over the problem time interval, computed from ,/%z where v 
is the kinematic viscosity, covers a circle of diameter approximately 0.14. This is 
about 6 mesh zones or 1 the perturbation wave length and significantly larger than 
the rollup region seen in the boundary integral computations. 

Since the evolution is chaotic, any errors introduced will grow exponentially with 
time. As will be shown the noise growth rate e is approximately equal to 10 bits/s. 
These computations were done on a computing machine with a 48-bit mantissa so 

581/74/2-14 
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Cycle 147 t = 2 Cycle 191 t = 25 

FIG. 2. Single mode Rayleigh-Taylor instability computed on a 60 x 60 Eulerian mesh with 6480 
Lagrange points defining the forced layer Mean density of the liquids is 1 g/cm3 and the viscosity is 0.01 
poise. The body force driving the layer is 117.6 dynes/cm). The wave length with the most rapid growth 
in the linear analysis is 2, = 0.15 cm = 6 zone widths. 

the maximum predictability time is approximately 4.8 s. Beyond this point all 
memory of the initial conditions is lost. A more realistic limit is the time required 
for errors to grow to the point that they can be spotted on the plots. The plot 
resolution is on the order of 10 to 11 bits, hence the maximum time before errors 
begin to show on the plots can at the most be no longer than about (48-ll)/iO= 
3.7 s. This is more than ten times farther than the last step shown in Fig. 2 even 
though there the single mode distortion is quite large. These test problems show 
that the chaotic evolution seen in the Rayleigh-Taylor problem is not due to lack of 
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Cycle1 t=o Cycle 108 t = .15 

Cycle 143 t = 2 Cycle 184 t = .25 

FIG. 3. Rayleigh-Taylor instability with the same physical specifications as the single mode run in 
Fig. 2, except that the initial condition is random white noise roughening of the surface instead of a 
single sine wave. The peak to peak maximum amplitude is the same as in Fig. 2. The four snapshots are 
at the same times. 

numerical accuracy or programing errors. When the Rayleigh-Taylor runs are 
repeated with the same physical parameters and peak to peak perturbation 
amplitude except that the surface displacement is random white noise, the evolution 
is typically like that shown in Fig. 3. 

PREDICTABILITY 

In the theory of ergodic chaos Lyapunov exponents measure the average rate at 
which trajectories in phase space diverge or converge along the principal axes, and 
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the largest Lyapunov exponent tells how fast information is created in bits/s, and 
how fast noise is generated in the system. Lyapunov exponents are not local quan- 
tities; they give the average rate over all of the phase space covered by a given 
chaotic system. They apply to a system which is ergodic, in which all transients 
have decayed away. However, many problems of interest such as the Rayleigh- 
Taylor problem are transient. In these cases prediction is possible over some limited 
time interval, and the question of practical concern is how can we quantitatively 
determine what the predictability time is. 

In the Introduction I defined a new quantity that is like a largest Lyapunov 
exponent in that it is a statistically averaged quantity measuring a change in dis- 
tance between two solutions starting with small random differences in the initial 
conditions. This quantity which I called a predictability exponent is different from 
the largest Lyapunov exponent in that it is an average over an ensemble of 
solutions computed over the same time interval, instead of a single solution 
averaged over many successive time intervals. By definition it is a statistical 
measure of how rapidly noise is generated during the transient phase of unstable 
nonlinear evolution and how rapidly any two solutions with small random differen- 
ces in initial conditions diverge in time. 

In experiments the initial conditions are not known exactly. In the Rayleigh- 
Taylor problem we only have, at best, a statistical description of the roughness of 
the interface, but we need to estimate the evolution nevertheless. Every slightly dif- 
ferent initial configuration for the interface is going to lead to a much different final 
configuration. In fact, numerical experimentation shows that each possible solution 
for some small random initial perturbation of the interface tends to diverge 
exponentially from every other solution, i.e., in Lagrange hydrodynamic com- 
putations the mesh configurations diverge. In this context the average we would be 
interested in would be over the range of all possible final configurations that could 
evolve, starting from a neighborhood of uncertainty about the initial position. If 
over this space we had an estimate for a quantity like the predictability exponent as 
I have defined it, then given a parameter describing the roughness and the predic- 
tability exponent, one would be able to determine the limits on how far the inter- 
face motion could be computed for a desired range of accuracy. 

One measure of how far apart two solutions are is the root mean square of the 
difference in the position of the Lagrange points defining the material regions, 

L,(t) = JlT {txiCn7 t)-xj(nv t))2 + (Yi(? t)-.Yj(n, t))21]3 (10) 

where xi(n, t) and y,(n, t) are the coordinates of the nth Lagrange point of the ith 
solution at time t, and N is the total number of Lagrange points in each solution. 

With the above definition for the distance between any two solutions I’ and j, we 
can compute the predictability exponent defined by Eq. (5), where the sum is over 
all independent pairs of trial solutions, each with a random perturbation of the 
initial surface roughness. If we had infinite computer time we could run all possible 
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initial conditions and so carry the average over all solution space. In practice we 
sample a small number of trial problems with random initial conditions and take 
the result as an approxiate estimate of the average. 

I tested the measure defined by Eq.(5) by plotting the log, of the separation 
between many pairs of solutions L, versus the time. If there are N solutions, each 
for a different seed in the random number generator for the initial surface 
roughness, then there are N( N - 1)/2 independent pairs of solutions. The separation 
between any two pairs of solutions has a large random component, but by 
including many cases on the same semi-log plot, these random fluctuations can be 
averaged out, leaving an approximation to the statistical limit. 

One example of the evolution of the instability and the breakup and rupture of 
the layer is shown in Fig. 3. Both the top and bottom surfaces of the layer have the 
same initial roughness; however, only the top surface goes unstable. The bottom 
surface perturbations decay in time because the computations include viscosity. All 
6480 Lagrange particles defining the layer are plotted. These are the coordinates 
used in Eq. (10) for computing the separation between two pairs of solutions. 

The separation between any two pairs of solutions does appear to have a well- 
defined statistical limiting curve. This can be seen in Fig. 4, where the log, of the 
separation between the fifteen possible pairs of solutions for the case where 
the body force is 117.6 dynes/cm3 are plotted. The dead space at the beginning 
of the runs (where L,(t) is just equal to the initial separation due to a different seed 
in the initial roughness generator) is a numerical artifact; before anything can 
happen the layer has to move a sufficient distance for the initial roughness to show 
up as a perturbation on the underlying Eulerian mesh. Once the instability starts, 
the separation between solutions L,(t) grows rapidly-in these examples at a rate 

FIG. 4. The separation between pairs of solutions of the Rayleigh-Taylor problem plotted versus 
time. The separation between two solutions is defined as the square root of the sums of the squares of 
the differences in coordinates of each of the 6480 Lagrange points defining the layer position. The delay 
at the start is the time needed for the layer to move one Eulerian mesh width. 
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of about 125 bits/s-corresponding to the rate of growth derived from the 
linearized Rayleigh-Taylor theory for the smallest wavelength perturbation that can 
lit into the Eulerian mesh. This phase lasts only a short time interval and results in 
a noise growth of about 1.9 bits. After this, log,[L(t)/L(O)] approaches a straight 
line asymptote with a slope of about 10 bits/s. The average slope is the graphical 
representation of 0, the predictability exponent defined by Eq. (5). Reference to 
Fig. 3 shows that most of the mixing leading to rupture of the layer takes place dur- 
ing this nonlinear asymptotic phase. 

Similar results are obtained when the force is increased to 940.8 dynes/cm3, 
corresponding to shortening the wavelength of most rapid growth (in the viscous 
linear analysis) to 3 zones, or 0.075 cm. The time scale is shortened by a factor of 
3 and the asymptotic slope increases to 28 bits/s. 

The results of the computations can be put in dimensionless form by normalizing 
the time by 

f*=JWi=&mii (11) 

where d is the thickness of the layer. 
It turns out that the behavior of all of the runs accumulated in this study is sum- 

marized by a single L(t) curve if the time is measured in units of t*. After adjusting 
the time origin to the takeoff point in Fig. 4 the dimensionless curve of separation 
between random pairs of solutions is, to a good approximation, given by 

log,[L(t)/L(O)] = 0.9 + 1.9[ 1 - eC3’]. (12) 

Equation (12) only predicts the behavior in the sense that it approximates the 
most likely outcome for the rate of growth of information, Any individual 
numerical model run or experiment is likely to deviate significantly from Eq. (12) as 
can be seen from the variation in the runs shown in Fig. 4. 

The results summarized in Fig. 4 and by Eqs. (5) and (12) show that any uncer- 
tainty in the specification of the initial conditions grows exponentially with time. 
The average rate of growth can be used to estimate an upper limit on the predic- 
tability of computations by dividing the number of bits in the machine word length 
by the predictability exponent as in Eq. (7). 

RESOLUTION AND DIMENSION 

It is also of interest to be able to determine limits on the spatial resolution of the 
Rayleigh-Taylor mixed region as a function of computing mesh refinement. The 
hydrodynamic runs show an initially roughened layer evolving into a chaotic set of 
whorls, tendrils, and bubbles. An upper limit on how much the resolution of the 
details of these shapes can increase with liner mesh spacing is given by the fractal 
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dimension. An improvement in the method of computing the dimension and results 
for the Rayleigh-Taylor runs and tests with the Lorenz equations are described in 
the following. 

The method [6] discussed in the Introduction is to count the number of pairs of 
points C” closer than distance r in m-dimensional phase space and then plot 
In C” vs In r. The slope of the curve is the correlation dimension and a lower bound 
on the fractal dimension. After doing the computations for a low dimensional exam- 
ple like the Rayleigh-Taylor problem it is easy to see that the sorting and counting 
of the distances between all pairs of points is equivalent to using each point for the 
center of an m-dimensional sphere to generate a curve Cm(r) for that point, and 
then adding all of the individual curves together. 

In the two-dimensional hydrodynamic cases, m = 2, the spheres are circles, the 
points are the Lagrange points defining the mixed layer, and the correlation dimen- 
sion is close to the fractal dimension. Two limiting cases illustrate the method. If 
there is a well-defined thick layer such as the beginning of the two-dimensional 
Rayleigh-Taylor runs the slope will be d = 2 because everywhere the number of 
Lagrange points defining the layer and lying within a circle of radius r will increase 
propertional to r*. If instead of a layer there were a thin line of points winding over 
the grid, the method would yield d = 1 since the number of points inside a circle of 
radius r will, on average, be propertional to r. For the 60 x 60 mesh runs there are 
6480 circles with 6480 points to count for each circle. If the method is implemented 
as described in [6] there will be 2.1 x 10’ distance computations and bin sorts. 
When the same problem is run with a 120 x 120 Eulerian mesh and 25,920 
Lagrange points the number of distance computations and bin sorts required in the 
point counting method is approximately 3.4 x 108. Even with special attention to 
programing efficiency using masking and bit shifting operations for the bin sorting, 
the computations can still be costly; they are more so in hydrodynamic applications 
because one may want to make many dimension measurements. 

The two-dimensional Rayleigh-Taylor problem is a good test problem for 
measuring dimension because it is easy to see how the computation works. In 
graphical terms the idea is to take each Lagrange point as the center of a set of con- 
centric circles forming a set of annular bins around the central point and to count 
the number of points in these bins. Taking a single point for the center and com- 
puting a curve of In C2 versus In I for this point can give erratic results. With 
reference to the snapshot of Rayleigh-Taylor mix in Fig. 3 it is easy to see why. If 
the center point is in the middle of a large chunk of the layer, the point count will 
go like the square of the radius. If the center point falls on one of the thin linear 
tendrils then the point count will tend towards proportionally to the first power. 
What is needed is an average count over the entire set of points-that is what the 
correlation integral method produces. However, this relatively simple case where 
the method can be easily visualized suggests that it is not necessary to do a radial 
count at every point. Instead it should be possible to get a reliable average from a 
much smaller sample of the total population of points provided this sample is 
chosen randomly to ensure that it is representative of the entire set. 
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FIG. 6. Plot of the log, of the point count C2 versus the log, of the distance from a randomly chosen 
point for the Lagrange points in Fig. 5. The lower curve denoted by the x’s is the point count for a single 
randomly chosen center point. The curves denoted by the +‘s, triangles, circles, and squares are the 
results of using 25, 50, 100, and 200 randomly chosen centers for the radial count. The right edge 
corresponds to a circle of diameter 0.5 cm in Fig. 5 or about the scale of the larger features. 

trials the curve based on a single sampling is surprizingly good. The right side of 
the figure corresponds to a circle of diameter 0.5 cm in Fig. 5, and the far left side to 
a circle with diameter of about 0.04 cm. Thus the slope of the curves at the right 
side corresponds to the dimension of the larger features in Fig. 5. There the slope of 
the curves is in the range of 1.7 to 1.8. 

Constant slope regions in the curve of In C”‘(r) vs In r indicate self similarity, in 
the sense that if the details of the flow field inside circles with different radii within 
the range of constant slope are magnified to the same scale then the patterns will, 
on average, be identical. In the Rayleigh-Taylor cases the dimension computed 
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gives information on the scaling of the computational mesh resolution. When the 
computational mesh size is increased from 60 x 60 Eulerian mesh zones and 
180 x 36 Lagrange points defining the layer to 120 x 120 Eulerian zones and 
360 x 72 Lagrange points, the linear mesh resolution is doubled, but the increase in 
resolution of the boundary details of the whorls, tendrils, and bubbles in the mixed 
region is only 2’.* = 3.5x. Although there are 4x more mesh points we get less than 
4x improvement in definition of the mixed layer because of the stretching and 
twisting of part of the material into thin filaments. 

The dimension scaling limit on spatial resolution is a purely geometrical effect. It 
tells how the resolution changes assuming that everything else including the velocity 
field remains the same when the mesh size is doubled. In a given run the dimension 
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FIG. 7. Plot of In C3 versus In r for the Lorenz attractor described by Eqs. (14t(16). The x’s, +‘s, 
triangles, circles, and squares denote the curves for random sample sizes of 1, 25, 50, 100, and 200 center 
points. Over distances in the range In r between - 1 and 1.5, the slope of the curve for sample size 200 is 
2.07 &- 0.01. 
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changes over time as the mixing of the different fluids progresses. When a 120 x 120 
run is compared with the same run on a 60 x 60 mesh the curve of dimension versus 
time is slightly different because the resolution of the velocity field is also changing. 

I have tested random sampling on other problems with good results. Figure 7 
shows statistical convergence of the In C3 vs In r curves on the Lorenz equations 
[ 141 for the case specified by 

dx/dt= lO(y-x) (14) 

dy/dt = x(28 -z) - y (15) 

dzldt = xy - (8/3) z. (16) 

These equations were integrated over a time interval of 240 with data output at 
intervals of 0.02 yielding 12,000 data points defining the solution. Transients were 
eliminated from this data by starting with output from a previous integration over 
an interval long enough for them to decay away. The dimension of the Lorenz 
attractor has previously been determined to be in the range of 2.06 to 2.07 [6,7]. 
The slope over the range - 1 <In r < 1.5 in Fig. 7 is 2.07 with an uncertainty of 
about kO.01 for the 200 random sample case. Above a distance interval of 2e’.’ the 
slope starts to decay to zero because that is approximately the maximum width of 
any cut through the attractor. Although the statistics for small sample sizes are 
poor, the sample size needed for accurate results is quite small compared to 
the amount of data in the time series. This example shows that it is not necessary 
to do a point count at every point in the solution to make accurate correlation 
dimensional measurements. The amount of computation required for the 200 
random sample case is reduced approximately sixty fold over the full correlation 
integral. 

CONCLUSIONS 

The computations have shown that Lagrange points can be used to measure dis- 
tance between pairs of solutions to the Rayleigh-Taylor instability problem starting 
with small random differences in initial conditions and that this information can be 
used to estimate the rate of loss of memory of initial conditions as the unstable flow 
evolves toward turbulence. Predictability can be defined in terms of an exponent 
with the physical dimensions of bits/unit time. This quantity is a statistical measure 
of the exponential rate of growth of noise during the transient nonlinear phase of 
the unstable evolution to chaos. The definition resembles that of the largest 
Lyapunov exponent in an ergodic system except that in the transient case the 
average is over the same time interval for an ensemble of runs differing by small 
random perturbations of the initial conditions. Given the accuracy with which the 
initial conditions are known, which in the case of the Rayleigh-Taylor instability is 
the uncertainty in the initial interface position, an estimate of the predictability time 
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is given by the precision with which the initial conditions are specified, in bits, 
divided by the predictability exponent as defined here. Experiments with the 
Rayleigh-Taylor instability problem show that as little as six independent runs are 
sufficient to get a good estimate of this quantity. 

Lagrange points can also be used to compute generalized dimensional measures 
during the late stages of Rayleigh-Taylor mixing. That in turn yields an upper limit 
on how much of an improvement in resolution of the geometrical details of the 
mixed region can be obtained with an increase in the size of the hydrodynamic 
computing mesh. The point counting method of estimating dimension can be used 
with the Lagrange data. In this method the distances between all pairs of points 
defining the solution are computed and sorted yielding a count of the numbers of 
pairs within a given distance or radius. The correlation dimension is the slope of the 
log of the count plotted versus the log of the radius. Other generalized dimensions 
can be obtained by the point count method if desired. The Rayleigh-Taylor 
problem is a good example for easily visualizing how point counting works and has 
been useful in revealing a way to speed up dimension computations by orders of 
magnitude. The increase is computational efficiency can be obtained by using a 
small random sampling of fixed center points for computing the radial distribution 
function instead of computing the distances between all pairs of points. Since the 
accuracy of sampling depends on the sample size rather than on the total number of 
points, this reduces the operations count from proportionality to N* for the full 
correlation integral to N for random sampling. On the Rayleigh-Taylor test 
problem containing 25,920 Lagrange points, the time required to obtain good 
statistical convergence is reduced by more than a factor of 100. 

Any hydrodynamic material tracking problem that has a positive predictability 
exponent or a fractal dimension is by definition one that produces Lagrange mesh 
scrambling. Thus measurement of dimension and predictability are feasible only 
with hydrodynamic computing methods that can work in such situations. Even 
though the problems to which these methods are applied may be fundamentally 
beyond deterministic predictability; over short time intervals at least some predic- 
tive capability is possible. 

APPENDIX A: HYDRODYNAMIC DIFFERENCE EQUATIONS 

The numerical integration method is essentially that described in [ 111 except 
that the viscous terms are explicit in time. Implicit differencing is not needed in 
these problems because the viscosity is relatively small and the mesh is uniform. An 
Adams-Bashforth method is used for the time integration of the Navier-Stokes 
equations, 

iJ,+= U;+(At/2)(3H;- H;-‘)+(l/R)V’iJy (Al 1 

lJyf’=U:-At ax,v+l, (‘42) 
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where R is the Reynolds number and 

Hi= -a,uiuj+fi, 

The body force term f, is zero unless adjoining zones contain Lagrange points; 
otherwise it is set equal to the input value for f,,. The average density of points in 
the adjoining pair of zones is computed and if it is less than the initial point density 
then the body force is reduced proportionately. Velocity values at the Lagrange 
points are interpolated from the Eulerian mesh values using area weighting of the 
four nearest mesh points as in [8]. New point coordinates are obtained by 
integrating these velocity components with the Adams-Bashforth formula used in 
Eq. (Al). 

The pressure function 4 is obtained from a direct solution, by cyclic reduction, of 
the standard five point difference approximation to the Poisson equation 

Periodic boundary conditions are used in both the x and y coordinates. With 
these boundary conditions 4 is indeterminate to within an additive constant, since 
only the gradient of the pressure is used in the solution. The constant is chosen to 
make the average of 4 equal to zero. The finite difference form of the velocity 
divergence in each zone is computed and checked at each cycle. It should always be 
of order of the machine word roundoff. 

The variable placement is the same as in [ 111 with 4 located at the centers of the 
Eulerian zones, with the U velocity components at the left and right side of the 
zones, and the V velocity components at the top and bottom sides of the zones. 
Uniform zoning with dx = dy was used in all of the runs. Five-point differencing is 
used for the Laplacian in the viscous terms, and second-order centered spatial 
differencing is used for the convective terms. For example, 

(a, U2)k 11 (U; - U;)/Ax, 

where 

Up=Wk+l+ U,) 
and 

U,=#U,+ U&l). 647) 

All of the computations reported on here were done with a constant time step 
chosen at the start to be small enough to stay within the Courant condition limit 
for the duration of the run. The time step can be changed if necessary by inter- 
polating a new value for H”-’ at one new time step interval backward in time, but 
it is better to avoid this if possible. 
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APPENDIX B: ANALYTIC SOLUTION FOR SHEAR FLOW 

The Navier-Stokes equations can be solved by Fourier series methods for the 
special case of steady shear flow driven by a spatially alternating body force. When 
a steady cross flow is included, the solution for the velocity component parallel to 
the driving force is a skewed profile like that shown in Fig. 1. This laminar flow 
pattern produces a balance between momentum transport by the cross flow and 
momentum transport by molecular viscosity. If UO is the cross flow velocity parallel 
to the x axis, F is body force parallel to the y axis with a square wave dependence 
on x periodic in length 2d, and v is the kinematic viscosity, then the solution for the 
flow velocity parallel to the force F is 

V(x)= 1 v, sin(nrrx/d + B,), @I) 
n=1,3,5 ,..., cc 

where 
tan /I, = -U, d/vnn 032) 

and 
v, = (4F/vm)[(U,m/vd) sin /I, - (m/d)* cos pn]-‘. 033 
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